

Max Domagk

Faculty of Electrical and Computer Engineering Institute of Electrical Power Systems and High Voltage Engineering

Determination of equivalent circuit models for the aggregated representation of downstream HV networks

Academia-Industry Workshop

Challenges of harmonic studies in modern transmission systems

TUD Dresden University of Technology

November 8, 2023

Agenda

- Motivation
- Downstream HV networks
- Equivalent circuit models
 - Circuit parameters
 - Circuit topologies
 - Application results
- Challenges

Motivation

- Coordination and limitation of harmonic emissions for installations require **harmonic simulations** (to determine harmonic propagation (influence coefficients) and summation in transmission systems)
- Simulations based on reliable models of all relevant components, incl. downstream distribution networks
- Models of component require realistic **frequency-dependent impedances**

Measurements

Simulations

• Implementation of frequency-dependent impedances of in simulations

Determination of equivalent circuit models

for the aggregated representation of downstream HV networks

Downstream HV networks Test network

<u>Transmission system</u>

- 17 Nodes in 380 kV
- 22 Nodes in 220 kV
- 16 Generators (60% MMCs)
- 5 compensation devices

Distribution system

- 39 Nodes in 110 kV
 - > 37 aggregated networks
 - 2 detailed networks (with 3 in-feeds)

Downstream HV networks Detailed 110-kV-model

Model details

- 13 Nodes in 110 kV
- 22 Nodes in 20 kV
- Aggregated 20-kV-load models
- All overhead lines
- 3 in-feeds from EHV:
 - 220 kV for Grid 1
 - 380 kV for Grid 2
- Determination of frequencydependent downstream impedances of HV networks

Downstream HV networks Impedance characteristics (1)

- Focus on **positive sequence** impedances •
- Multiple resonances for downstream ٠ impedance of detailed 110-kV-model
- Similar resonance frequencies at in-feeds ٠

Downstream HV impedance (at 110-kV-side of Grid 2)

Determination of equivalent circuit models Institute of Electrical Power Systems and High Voltage Engineering Academia-Industry Workshop // November 8, 2023

Downstream HV networks Impedance characteristics (2)

- Focus on **positive sequence** impedances
- Multiple resonances for downstream impedance of detailed 110-kV-model
- Similar resonance frequencies at in-feeds

Downstream HV impedance (at 110-kV-side of Grid 2)

- Different network topology
- Excititation using transformer in-rush currents at 380 kV
- Comparable impedances

Equivalent circuit models

Equivalent circuit models Circuit parameters (1)

Estimation of circuit parameters

- Finding parameter values for defined circuit topology to fit downstream impedance <u>Z_{DS}</u>
- Typical optimization problem for:
 - Nonlinear least squares
 - Constrained nonlinear multivariate functions
 - Particle swarm optimization
 - ...
- Limit search space for meaningful results (lower and upper boundaries for parameters e.g. $R = [0, 200] \Omega$)
- May require initial parameters values (e.g. middle of search space $R_0 = 100 \Omega$)

Equivalent circuit models Circuit parameters (2)

Estimation of circuit parameters

- Finding parameter values for defined circuit topology to fit downstream impedance <u>Z_{DS}</u>
- Typical optimization problem for:
 - Nonlinear least squares
 - Constrained nonlinear multivariate functions
 - Particle swarm optimization
 - ...
- Limit search space for meaningful results (lower and upper boundaries for parameters e.g. $R = [0, 200] \Omega$)
- May require initial parameters values (e.g. middle of search space $R_0 = 100 \Omega$)

RL series (IEEE Model 1)

 $\underline{Z}_{\mathrm{EC}}(s) = R + s \cdot L$

with $s = j\omega = j2\pi f$

Optimization function

$$\min f(s) \coloneqq \sum \left| \underline{Z}_{\mathrm{DS}}(s) - \underline{Z}_{\mathrm{EC}}(s) \right|^2$$

Measure of fit ("normalized" R-squared)

 $r^{2} \approx \frac{\sum \left| \underline{Z}_{\rm DS} - \underline{Z}_{\rm EC} \right|^{2}}{\sum \left| \underline{Z}_{\rm DS} - \overline{\underline{Z}}_{\rm DS} \right|^{2}}$

Equivalent circuit models Circuit topologies (1)

- Defining circuit topologies essential for the aggregated representation
- Conventional load models alone not suitable for (multiple) resonances

Determination of equivalent circuit models Institute of Electrical Power Systems and High Voltage Engineering Academia-Industry Workshop // November 8, 2023

Slide 11

Equivalent circuit models Circuit topologies (2)

- Defining circuit topologies essential for the aggregated representation
- Conventional load models alone not suitable for (multiple) resonances
- Requires parallel and series resonant circuits:
 - C01 = 1x parallel/series resonances
 - C02 = 2x parallel/series resonances
 - C03 = 3x parallel/series resonances

Equivalent circuit models Application results (1)

- Estimation of circuit parameters for different:
 - Fitting methods
 - Circuit topologies
 - Downstream impedances
 - Parameter search spaces
 - Initial parameter values

lsq ... Nonlinear least squaresfmin ... Constrained nonlinear multivariate functionspso ... Particle swarm optimization

Equivalent circuit models Application results (2)

Example application

- Fitting of **measured downstream LV impedances** ٠
- Implementation for MV simulations ٠

 Artificial increase of sample size by averaging parameters for combinations of fitted circuits

 $f \text{ in Hz} \rightarrow$

Range of parameter values *12 measured and 66 artificial impedances* Optimal circuit topology $-\hat{Z}_{avg_{\perp}}$ ⁺. 30 20 10 10 30 30 40 |Z| in Ω $Z_{\rm EC}$ **R1** L1 20 20 0.5 20 10 **R2 R3** 0 0.10.2 0 0.5 1 0 1 2 0 0.5 1000 500 1500 2000 2500 0 R2 in $\Omega \rightarrow$ R3 in $\Omega \rightarrow$ C1 in F \rightarrow R1 in $\Omega \rightarrow$ $f \text{ in Hz} \rightarrow$ L2 **L3** 20100 - 15 10 5 30 20 20 $C1 \neq C2$ Zin° 200 10 10 N -100 20 200 200 0.5 0 10 0 100 0 100 0 500 1000 1500 2000 0 2500

L3 in mH \rightarrow

Determination of equivalent circuit models Institute of Electrical Power Systems and High Voltage Engineering Academia-Industry Workshop // November 8, 2023

L1 in mH \rightarrow

L2 in mH \rightarrow

C2 in F \rightarrow

Challenges Model fitting

Selection of circuit topologies

- Modified load models
- Combinations of multiple load models

Estimation of circuit parameters

- Parameter selective search spaces
- Additional constraints

Alternative approaches

• Deduct circuit topologies from vector fitting results (e.g. number of poles → resonances)

Suboptimal fitting for multiple resonances

Challenges Model implementation

Multiple in-feeds

- Individual equivalents per in-feed ٠
- Determination of "meshed" equivalents ٠

Sequence systems

- Individual equivalents per sequence ٠ (positive, negative and zero sequence)
- Equivalents for coupled sequence systems ٠ (e.g. unbalanced conditions)

Distribution network with multiple in-feeds

Thank you for your attention!

max.domagk@tu-dresden.de
+49 351 463 35223

maxdomagk.de

Determination of equivalent circuit models Institute of Electrical Power Systems and High Voltage Engineering Academia-Industry Workshop // November 8, 2023

