

Max Domagk, Olga Zyabkina, Jan Meyer and Marco Lindner

Faculty of Electrical and Computer Engineering Institute of Electrical Power Systems and High Voltage Engineering

Uncertainty in the Assessment of Harmonic Voltages and Currents in Sequence Domain

NEIS 2025

Conference on Sustainable Energy Supply and Energy Storage Systems September 15-16, Hamburg, Germany

Agenda

Motivation

Uncertainty Propagation

- Uncertainty in Phase Domain
- Simulation of Uncertainty Propagation
- Uncertainty in Sequence Domain

Application Example

Conclusion

Motivation

Modern power systems: more complex

- Large scale renewable integration (wind, solar)
- Proliferation of non-linear loads and power-electronics

Harmonic distortion: rising concern

- Requires simulations to coordinate and limit harmonic emissions
- Depends on accurate measurement data and simulation models
- Often analyzed via symmetrical components (sequence domain)

Measurement uncertainty: critical factor

- PQ instruments must meet accuracy requirements (IEC 61000-4-30 Class A and IEC 61000-4-7 Class I)
- Uncertainty from sensors, A/D converters and algorithms
- Inaccurate data → flawed planning or compliance risks

Uncertainty PropagationUncertainty in Phase Domain

Measurement chain for harmonic phasors:

Accuracy requirements:

 Only limited to fundamental frequency (most VTs were designed accordingly) Accuracy requirements:

- IEC 61000-4-30
- IEC 61000-4-7 (harmonics)

Resulting uncertainty:

- Magnitude ≤ 10 %
- Phase angle ≤ 5 °

Resulting uncertainty:

???

Uncertainty Propagation

Simulation of Uncertainty Propagation

Reference phasors

$$\underline{\boldsymbol{U}}_{\mathrm{abc}} = [\underline{\boldsymbol{U}}_{\mathrm{a}} \quad \underline{\boldsymbol{U}}_{\mathrm{b}} \quad \underline{\boldsymbol{U}}_{\mathrm{c}}]^T$$

Phase domain

Uncertainty phasors

$$\underline{\boldsymbol{\epsilon}}_{\mathrm{abc}} = [\underline{\boldsymbol{\epsilon}}_{\mathrm{a}} \quad \underline{\boldsymbol{\epsilon}}_{\mathrm{b}} \quad \underline{\boldsymbol{\epsilon}}_{\mathrm{c}}]^T$$

Phasors with uncertainty

$$\underline{\widetilde{\boldsymbol{U}}}_{abc} = (\boldsymbol{E} + \operatorname{diag}(\underline{\epsilon}_{a}, \underline{\epsilon}_{b}, \underline{\epsilon}_{c})) \cdot \underline{\boldsymbol{U}}_{abc}$$

Sampling of uncertainties in phase domain:

- Monte Carlo method with 100.000 samples
- Distribution as **uniform** and **normal** (3σ covering 99.7%)
- Magnitude uncertainty of ±10 % and phase angle uncertainty of ±5 °

Uncertainty Propagation

Simulation of Uncertainty Propagation

Combination of sequence components (reference phasors):

Characteristic sequence components of harmonics

h	2	3	4	5	6	7	8	9	•••
Pos.			Х			Х			
Neg.	Χ			Χ			Χ		
Zero		Χ			Χ			Х	

Relative Unbalance Level (RUL)

$$RUL_s^{(h)} = \frac{U_s^{(h)}}{U_1^{(h)} + U_2^{(h)} + U_0^{(h)}} \text{ for } s \in \{1, 2, 0\}$$

Balanced 7th harmonic \rightarrow RUL = 100% / 0% / 0% (pure positive seq.) Unbalanced 7th harmonic \rightarrow RUL = 70% / 20% / 10% (mixed seq. comp.)

Combinations of sequence components

	RUL in %						
Comb.	Pos.	Neg.	Zero				
1	100	0	0				
2	90	0	10				
3	80	10	10				
•••	•••	•••	•••				
67	33.3	33.3	33.3				

67 unique combinations of sequence components

Uncertainty PropagationUncertainty in Sequence Domain

Resulting uncertainty for positive sequence:

- Lowest absolute uncertainty
 - Pure positive sequence (100% / 0% / 0%) and
 - Balanced seq. comp. (33.3% / 33.3% / 33.3%)
- Higher absolute uncertainty
 - Only two dominant components (e.g. 40% / 60% / 0%)
- Highest absolute uncertainty
 - No positive sequence (e.g. 0% / 50% / 50%)
- ➤ Similar uncertainties for other sequence components (e.g. zero seq. with lowest uncertainty → pure zero seq.)
- > Similar behaviour of phase angle uncertainty

Maximum magnitude uncertainty (in V) of positive seq. (references phasors of 100 V)

Uncertainty Propagation Uncertainty in Sequence Domain

Resulting uncertainty:

- Uniform and normal distributions
- Uncertainties of 10 % / 5 ° and 0.1 % / 0.05 °

Magnitude uncertainty

- Absolute magnitude uncertainty <u>consistent</u> across different magnitudes
- Relative magnitude uncertainty <u>vastly higher</u> for lower sequence magnitudes

Phase angle uncertainty

Phase angle uncertainty <u>vastly higher</u> for lower sequence magnitudes

95th percentile values of uncertainty in sequence domain

Exceedance of uncertainty in phase domain: smallest sequence component with **RUL < 37 %**

Application Example

Measurement data

- 5 German TSO sites (2×220 kV, 3×400 kV) over 45 to 72 days
- 10-min values from PQ instruments (IEC 61000-4-30 Class A)

Data pre-processing

- Harmonic phasors for voltage and current
- Filtering to ensure uncertainty in phase domain below ±10 % and ± 5 °
 - Retained: odd harmonics e.g. 3, 5, 7, 11, 13 (≥80 % data)
 - Excluded: even harmonics & order >17

Uncertainty assessment in sequence domain

- Most non-characteristic components with RUL ≤ 37 %
- Characteristic pos./neg. sequence harmonics reliable with RUL ≈ 80%
- Zero-sequence results show mixed reliability

RUL by characteristic sequence aggregated over 5 sites for current and voltage harmonics

Conclusion

- Propagation of uncertainty from the **phase domain** to the **sequence domain** can significantly reduce harmonic phasor accuracy in sequence domain
- Small, non-characteristic sequence components are particularly affected, exhibiting high relative uncertainties, which makes them unreliable for further analysis
- A 37 % RUL threshold is applied to ensure that only reliable harmonic voltage/current data are used

Thank you for your attention!

+49 351 463 35223

maxdomagk.de

