Analysis of Voltage Harmonic Trends in the Estonian Transmission System

Max Domagk, Jan Meyer TUD Dresden University of Technology, Germany Jako Kilter Tallinn University of Technology, Estonia Rain Maripuu Elering AS, Estonia

Motivation

- Grid changes (e.g. renewables & EVs) may impact Power Quality
- Monitoring campaigns required
- Data analytics to extract insights

Compliance with limits

- Utilization = value / limit
- Flexible aggregation of values

Fig. 2 – Example time series

Measurement data

- 15 sites in Estonian transmission system (110 kV & 330 kV) measured up to 7.5 years
- Planning levels for 27 PQ parameters
- Weekly 95th percentiles from 10-min values

Trend developments

- Extraction of trend component
- Quantification of recent trend gain

Conclusion

- 99.6 % of weeks comply with planning levels
- Higher harmonic emissions mostly occur in summer months
- Most trends are steady or decreasing
- Some strong increases for even harmonics of order h ≤ 12
- Findings encourage further investigation

1st ICHQP workshop **From Planning to Operation: Efficient Assessment of Harmonic Emission from Distorting Installations** King's College London, UK June 11-12, 2025